Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
1.
Phytomedicine ; 129: 155597, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643713

RESUMO

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.

2.
Metabolism ; 155: 155916, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615945

RESUMO

Exercise is an effective non-pharmacological strategy for the treatment of nonalcoholic steatohepatitis (NASH), but the underlying mechanism needs further investigation. Kruppel-like factor 10 (Klf10) is a transcriptional factor that is expressed in multiple tissues including liver, whose role in NASH is not well defined. In our study, exercise induces hepatic Klf10 expression through the cAMP/PKA/CREB pathway. Hepatocyte-specific knockout of Klf10 (Klf10LKO) increases lipid accumulation, cell death, inflammation and fibrosis in NASH diet-fed mice and reduces the protective effects of treadmill exercise against NASH, while hepatocyte-specific overexpression of Klf10 (Klf10LTG) works in concert with exercise to reduce NASH in mice. Mechanistically, Klf10 promotes the expression of fumarate hydratase 1 (Fh1), thereby reducing fumarate accumulation in hepatocytes. This decreases the trimethyl (me3) levels of histone 3 lysine 4 (H3K4me3) on lipogenic genes promoters to attenuate lipogenesis, thus ameliorating free fatty acids (FFAs)-induced hepatocytes steatosis, apoptosis, insulin resistance and blunting dysfunctional hepatocytes-mediated activation of macrophages and hepatic stellate cells. Therefore, by regulating the Fh1/fumarate/H3K4me3 pathway, Klf10 acts as a downstream effector of exercise to combat NASH.

3.
Curr Drug Metab ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38571358

RESUMO

AIM: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. METHODS: A human, goat, pig and rat liver microparticles were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. RESULTS: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. CONCLUSION: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application.

4.
Clin Exp Med ; 24(1): 66, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564029

RESUMO

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) patients with dual positivity for proteinase 3-ANCA (PR3-ANCA) and myeloperoxidase-ANCA (MPO-ANCA) are uncommon. We aimed to investigate these idiopathic double-positive AAV patients' clinical features, histological characteristics, and prognosis. We reviewed all the electronic medical records of patients diagnosed with AAV to obtain clinical data and renal histological information from January 2010 to December 2020 in a large center in China. Patients were assigned to the MPO-AAV group or PR3-AAV group or idiopathic double-positive AAV group by ANCA specificity. We explored features of idiopathic double-positive AAV. Of the 340 patients who fulfilled the study inclusion criteria, 159 (46.76%) were female, with a mean age of 58.41 years at the time of AAV diagnosis. Similar to MPO-AAV, idiopathic double-positive AAV patients were older and had more severe anemia, lower Birmingham Vasculitis Activity Score (BVAS) and C-reactive protein (CRP) levels, less ear, nose, and throat (ENT) involvement, higher initial serum creatinine and a lower estimated glomerular filtration rate (eGFR) when compared with PR3-AAV (P < 0.05). The proportion of normal glomeruli of idiopathic double-positive AAV was the lowest among the three groups (P < 0.05). The idiopathic double-positive AAV patients had the worst remission rate (58.8%) among the three groups (P < 0.05). The relapse rate of double-positive AAV (40.0%) was comparable with PR3-AAV (44.8%) (P > 0.05). Although there was a trend toward a higher relapse rate of idiopathic double-positive AAV (40.0%) compared with MPO-AAV (23.5%), this did not reach statistical significance (P > 0.05). The proportion of patients who progressed to ESRD was 47.1% and 44.4% in the idiopathic double-positive AAV group and MPO-AAV group respectively, without statistical significance. Long-term patient survival also varied among the three groups (P < 0.05). Idiopathic double-positive AAV is a rare clinical entity with hybrid features of MPO-AAV and PR3-AAV. MPO-AAV is the "dominant" phenotype in idiopathic double-positive AAV.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Mieloblastina , Prognóstico , Peroxidase , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/terapia , Recidiva
5.
World J Clin Cases ; 12(8): 1510-1516, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38576806

RESUMO

BACKGROUND: The prognosis for patients with advanced metastatic cervix cancer (MCC) is poor, and this disease continues to pose a considerable therapeutic challenge. Despite the administration of first-line regimens consisting of cisplatin, paclitaxel, and bevacizumab, survival rates for patients with metastasis remain poor. The emergence of bispecific antibodies (BsAbs) offers a novel treatment option for patients diagnosed with MCC. CASE SUMMARY: In this report, we present a patient with MCC who was treated with cadonilimab monotherapy at a dose of 6 mg/kg every two weeks after chemotherapy was proven to be intolerable. The patient exhibited a sustained complete response for a duration of 6 months, demonstrating an optimistic outlook. CONCLUSION: This case illustrates the considerable efficacy of cadonilimab for treating advanced MCC. Therefore, BsAb therapy is a promising strategy for effectively treating patients with advanced MCC and should be considered as an option when patients are intolerant to standard chemotherapy.

6.
J Magn Reson Imaging ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558213

RESUMO

BACKGROUND: Alcoholic cardiomyopathy (ACM) can lead to progressive cardiac dysfunction and heart failure, but little is known about biventricular impairment and ventricular interdependence (VI) in ACM patients. PURPOSE: To use cardiac MRI to investigate biventricular impairment and VI in ACM patients. STUDY TYPE: Retrospective. POPULATION: Forty-one male patients with ACM and 45 sex- and age-matched controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession sequence, inversion recovery prepared echo-planar imaging sequence and phase-sensitive inversion recovery sequence. ASSESSMENT: Biventricular structure, function, and global strain (encompassing peak strain [PS], peak systolic, and diastolic strain rate), PS of interventricular septal (IVS), microvascular perfusion (including upslope and time to maximum signal intensity [TTM]), late gadolinium enhancement (LGE), and baseline characteristics were compared between the controls and ACM patients. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, Pearson's correlation, and multivariable linear regression models with a stepwise selection procedure. A two-tailed P value <0.05 was deemed as statistically significant. RESULTS: Compared to control subjects, ACM patients showed significantly biventricular adverse remodeling, reduced left ventricle (LV) global upslope and prolonged global TTM, and the presence of LGE. ACM patients were characterized by a significant decline in all global strain within the LV, right ventricle (RV), and IVS compared with the controls. RV global PS was significantly associated with LV global PS and IVS PS in radial, circumferential, and longitudinal directions. Multivariable analyses demonstrated the longitudinal PS of IVS was significantly correlated with RV global radial PS (ß = 0.614) and circumferential PS (ß = 0.545). Additionally, RV global longitudinal PS (GLPS) was significantly associated with radial PS of IVS (ß = -0.631) and LV GLPS (ß = 1.096). DATA CONCLUSION: ACM patients exhibited biventricular adverse structural alterations and impaired systolic and diastolic function. This cohort also showed reduced LV microvascular perfusion, the presence of LGE, and unfavorable VI. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.

7.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599770

RESUMO

Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.


Assuntos
RNA de Transferência , Ribossomos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Microscopia Crioeletrônica , Ribossomos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Valina/análise , Valina/metabolismo
8.
Front Pharmacol ; 15: 1372973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606176

RESUMO

Objective: Aloperine (ALO) is an effective quinolizidine alkaloid. Previous research has demonstrated its antiarrhythmic effect by inhibiting voltage-gated sodium currents in rat ventricular myocytes. This study explored its effect on transient outward potassium currents (Ito) in rat atrial myocytes to identify potential targets in the context of ion channel currents. Methods: The Ito characteristics in rat atrial myocytes were recorded using a whole-cell patch-clamp technique. Molecular docking was performed to validate ligand-protein binding interactions. Results: ALO at concentrations of 3 and 10 µM significantly reduced Ito current densities. Gating kinetics analysis revealed ALO's ability to slow Ito activation, hasten inactivation, and prolong transition from inactive to resting state. Molecular docking revealed that ALO could stably bind to KCND2. Conclusion: ALO may inhibit Ito by slowing the activation process, accelerating inactivation, and delaying the recovery time after inactivation, potentially preventing acetylcholine-induced AF.

9.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38624086

RESUMO

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Assuntos
Antineoplásicos , Neoplasias Colorretais , Quadruplex G , Mitocôndrias , Humanos , Quadruplex G/efeitos dos fármacos , Ligantes , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto , Células HCT116 , DNA Mitocondrial/metabolismo
10.
Prep Biochem Biotechnol ; : 1-11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592940

RESUMO

We established an efficient method using high-speed countercurrent chromatography (HSCCC) combined with preparative high-performance liquid chromatography (prep-HPLC) for isolating and purifying Gelsemium elegans (G. elegans) alkaloids. First, the two-phase solvent system composed of 1% triethylamine aqueous solution/n-hexane/ethyl acetate/ethanol (volume ratio 4:2:3:2) was employed to separate the crude extract (350 mg) using HSCCC. Subsequently, the mixture that resulted from HSCCC was further separated by Prep-HPLC, resulting in seven pure compounds including: 14-hydroxygelsenicine (1, 12.1 mg), sempervirine (2, 20.8 mg), 19-(R)-hydroxydihydrogelelsevirine (3, 10.1 mg), koumine (4, 50.5 mg), gelsemine (5, 32.2 mg), gelselvirine (6, 50.5 mg), and 11-hydroxyhumanmantenine (7, 12.5 mg). The purity of these seven compounds were 97.4, 98.9, 98.5, 99, 99.5, 96.8, and 85.5%, as determined by HPLC. The chemical structures of the seven compounds were analyzed and confirmed by electrospray ionization mass spectrometry (ESI-MS), 1H-nuclear magnetic resonance (1H NMR), and 13 C-nuclear magnetic resonance (13 C NMR) spectra. The results indicate that the HSCCC-prep-HPLC method can effectively separate the major alkaloids from the purified G. elegans, holding promising prospects for potential applications in the separation and identification of other traditional Chinese medicines.

11.
Nat Commun ; 15(1): 3043, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589394

RESUMO

Carbon quantum dots are emerging as promising nanomaterials for next-generation displays. The elaborate structural design is crucial for achieving thermally activated delayed fluorescence, particularly for improving external quantum efficiency of electroluminescent light-emitting diodes. Here, we report the synthesis of onion-like multicolor thermally activated delayed fluorescence carbon quantum dots with quantum yields of 42.3-61.0%. Structural, spectroscopic characterization and computational studies reveal that onion-like structures assembled from monomer carbon quantum dots of different sizes account for the decreased singlet-triplet energy gap, thereby achieving efficient multicolor thermally activated delayed fluorescence. The devices exhibit maximum luminances of 3785-7550 cd m-2 and maximum external quantum efficiency of 6.0-9.9%. Importantly, owing to the weak van der Waals interactions and adequate solution processability, flexible devices with a maximum luminance of 2554 cd m-2 are realized. These findings facilitate the development of high-performance carbon quantum dots-based electroluminescent light-emitting diodes that are promising for practical applications.

12.
BMC Infect Dis ; 24(1): 381, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589778

RESUMO

BACKGROUND: Nocardia farcinica is one of the most common Nocardia species causing human infections. It is an opportunistic pathogen that often infects people with compromised immune systems. It could invade human body through respiratory tract or skin wounds, cause local infection, and affect other organs via hematogenous dissemination. However, N. farcinica-caused bacteremia is uncommon. In this study, we report a case of bacteremia caused by N. farcinica in China. CASE PRESENTATION: An 80-year-old woman was admitted to Peking Union Medical College Hospital with recurrent fever, right abdominal pain for one and a half month, and right adrenal gland occupation. N. farcinica was identified as the causative pathogen using blood culture and plasma metagenomics next-generation sequencing (mNGS). The clinical considerations included bacteremia and adrenal gland abscess caused by Nocardia infection. As the patient was allergic to sulfanilamide, imipenem/cilastatin and linezolid were empirically administered. Unfortunately, the patient eventually died less than a month after the initiation of anti-infection treatment. CONCLUSION: N. farcinica bacteremia is rare and its clinical manifestations are not specific. Its diagnosis depends on etiological examination, which can be confirmed using techniques such as Sanger sequencing and mNGS. In this report, we have reviewed cases of Nocardia bloodstream infection reported in the past decade, hoping to improve clinicians' understanding of Nocardia bloodstream infection and help in its early diagnosis and timely treatment.


Assuntos
Bacteriemia , Nocardiose , Nocardia , Sepse , Feminino , Humanos , Idoso de 80 Anos ou mais , Nocardia/genética , Nocardiose/diagnóstico , Nocardiose/tratamento farmacológico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico
13.
Biochem Genet ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642175

RESUMO

A series of studies have confirmed the relationship between circular RNAs (circRNAs) and metabolic diseases. Hsa_circ_0006260 has been reported to be lowly expressed in the placenta of gestational diabetes mellitus (GDM) patients, but the underlying mechanism and its biological functions remain obscure. Placental tissues were collected from 37 pregnant women with normal glucose tolerance (NGT) and 37 pregnant women with GDM. Expression changes of hsa_circ_0006260 in placentas and high glucose (HG)-stimulated HTR-8/SVneo cells were detected using real-time quantitative polymerase chain reaction. Cell viability and migration were determined by cell counting and transwell assays, respectively. Measurement of cytokines was done by enzyme-linked immunosorbent assay. Cell apoptosis was estimated by flow cytometry assay. The molecular mechanisms were identified using dual-luciferase reporter and RNA-binding protein immunoprecipitation assays. Hsa_circ_0006260 expression was remarkably lowered in GDM patient-derived placentas and HG-stimulated HTR-8/SVneo cells. Functionally, hsa_circ_0006260 overexpression weakened HG-mediated repression of HTR-8/SVneo cell viability and migration, as well as promotion of HTR-8/SVneo cell inflammatory response and apoptosis. Mechanistically, hsa_circ_0006260 functioned as a miR-770-5p decoy to mediate fibronectin type III domains containing protein 5 (FNDC5) expression. Ectopic expression of miR-770-5p weakened hsa_circ_0006260 overexpression-mediated repression of HG-induced HTR-8/SVneo cell dysfunction. Also, FNDC5 knockdown lessened miR-770-5p overexpression-mediated promotion of HG-induced HTR-8/SVneo cell dysfunction. Our findings manifested a novel mechanism by which hsa_circ_0006260 could lower HG-induced HTR-8/SVneo cell dysfunction by upregulating FNDC5 via binding to miR-770-5p, which shed new light on circRNA mediated GDM pathogenesis.

14.
Front Pharmacol ; 15: 1363212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476326

RESUMO

Both continuous oxidative stress and poly (ADP-ribose) polymerase 1 (PARP-1) activation occur in neurodegenerative diseases such as Parkinson's disease. PARP-1 inhibition can reverse mitochondrial damage and has a neuroprotective effect. In a previous study, we synthesized melatonin derivative 6a (MD6a) and reported that it has excellent antioxidant activity and significantly reduces α-synuclein aggregation in Caenorhabditis elegans; however, the underlying mechanism is largely unknown. In the present study, we revealed that MD6a is a potential PARP-1 inhibitor, leading to mammalian targe of rapamycin/heat shock factor 1 signaling downregulation and reducing heat shock protein 4 and 6 expression, thus helping to maintain protein homeostasis and improve mitochondrial function. Together, these findings suggest that MD6a might be a viable candidate for the prevention and treatment of Parkinson's disease.

15.
Materials (Basel) ; 17(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473462

RESUMO

Porous silicon (PSi) has promising applications in optoelectronic devices due to its efficient photoluminescence (PL). This study systematically investigates the effects of various organic solvents and their concentrations during electrochemical etching on the resulting PL and surface morphology of PSi. Ethanol, n-butanol, ethylene glycol (EG) and N,N-dimethylformamide (DMF) were employed as solvents in hydrofluoric acid (HF)-based silicon etching. The PL peak position exhibited progressive blue-shifting with increasing ethanol and EG concentrations, accompanied by reductions in the secondary peak intensity and emission linewidth. Comparatively, changes in n-butanol concentration only slightly impacted the main PL peak position. Additionally, distinct morphological transitions were observed for different solvents, with ethanol and n-butanol facilitating uniform single-layer porous structures at higher concentrations in contrast to the excessive etching caused by EG and DMF resulting in PL quenching. These results highlight the complex interdependencies between solvent parameters such as polarity, volatility and viscosity in modulating PSi properties through their influence on surface wetting, diffusion and etching kinetics. The findings provide meaningful guidelines for selecting suitable solvent conditions to tune PSi characteristics for optimized device performance.

16.
Nat Commun ; 15(1): 1995, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443404

RESUMO

Cardiac macrophage contributes to the development of cardiac fibrosis, but factors that regulate cardiac macrophages transition and activation during this process remains elusive. Here we show, by single-cell transcriptomics, lineage tracing and parabiosis, that cardiac macrophages from circulating monocytes preferentially commit to macrophage-to-myofibroblast transition (MMT) under angiotensin II (Ang II)-induced hypertension, with accompanying increased expression of the RNA N6-methyladenosine demethylases, ALKBH5. Meanwhile, macrophage-specific knockout of ALKBH5 inhibits Ang II-induced MMT, and subsequently ameliorates cardiac fibrosis and dysfunction. Mechanistically, RNA immunoprecipitation sequencing identifies interlukin-11 (IL-11) mRNA as a target for ALKBH5-mediated m6A demethylation, leading to increased IL-11 mRNA stability and protein levels. By contrast, overexpression of IL11 in circulating macrophages reverses the phenotype in ALKBH5-deficient mice and macrophage. Lastly, targeted delivery of ALKBH5 or IL-11 receptor α (IL11RA1) siRNA to monocytes/macrophages attenuates MMT and cardiac fibrosis under hypertensive stress. Our results thus suggest that the ALKBH5/IL-11/IL11RA1/MMT axis alters cardiac macrophage and contributes to hypertensive cardiac fibrosis and dysfunction in mice, and thereby identify potential targets for cardiac fibrosis therapy in patients.


Assuntos
Adenina , Hipertensão , Interleucina-11 , Animais , Humanos , Camundongos , Adenina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase , Angiotensina II , Cardiotônicos , Macrófagos , Miofibroblastos , RNA
17.
J Org Chem ; 89(7): 4438-4443, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471105

RESUMO

A straight and efficient protocol for the synthesis of hindered indole-ethers via C-H alkoxylation of indoles was developed by a cobalt-catalyzed cross-dehydrogenative coupling reaction with secondary alcohols. The selection of the salicylaldehyde-Co(II) catalyst enables the reaction to proceed under conditions without acid or base addition in the presence of limited alcohols. The protocol has broad substrate scope for both indole and secondary alcohols and exhibits good functional tolerance. The synthetic applications are proven by gram-scale reaction and further diversification of the product. Preliminary mechanistic investigations indicate that the activation of C-H bonds is not the rate-determining step of the reaction.

18.
World J Clin Oncol ; 15(2): 243-270, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38455128

RESUMO

BACKGROUND: The development and progression of hepatocellular carcinoma (HCC) have been reported to be associated with immune-related genes and the tumor microenvironment. Nevertheless, there are not enough prognostic biomarkers and models available for clinical use. Based on seven prognostic genes, this study calculated overall survival in patients with HCC using a prognostic survival model and revealed the immune status of the tumor microenvironment (TME). AIM: To develop a novel immune cell-related prognostic model of HCC and depict the basic profile of the immune response in HCC. METHODS: We obtained clinical information and gene expression data of HCC from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. TCGA and ICGC datasets were used for screening prognostic genes along with developing and validating a seven-gene prognostic survival model by weighted gene coexpression network analysis and least absolute shrinkage and selection operator regression with Cox regression. The relative analysis of tumor mutation burden (TMB), TME cell infiltration, immune checkpoints, immune therapy, and functional pathways was also performed based on prognostic genes. RESULTS: Seven prognostic genes were identified for signature construction. Survival receiver operating characteristic curve analysis showed the good performance of survival prediction. TMB could be regarded as an independent factor in HCC survival prediction. There was a significant difference in stromal score, immune score, and estimate score between the high-risk and low-risk groups stratified based on the risk score derived from the seven-gene prognostic model. Several immune checkpoints, including VTCN1 and TNFSF9, were found to be associated with the seven prognostic genes and risk score. Different combinations of checkpoint blockade targeting inhibitory CTLA4 and PD1 receptors and potential chemotherapy drugs hold great promise for specific HCC therapies. Potential pathways, such as cell cycle regulation and metabolism of some amino acids, were also identified and analyzed. CONCLUSION: The novel seven-gene (CYTH3, ENG, HTRA3, PDZD4, SAMD14, PGF, and PLN) prognostic model showed high predictive efficiency. The TMB analysis based on the seven genes could depict the basic profile of the immune response in HCC, which might be worthy of clinical application.

19.
ACS Sens ; 9(3): 1545-1554, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450702

RESUMO

rRNAs are prevalent in living organisms. They are produced in nucleolus and mitochondria and play essential cellular functions. In addition to the primary biofunction in protein synthesis, rRNAs have been recognized as the emerging signaling molecule and drug target for studies on nucleolus morphology, mitochondrial autophagy, and tumor cell malignancy. Currently, only a few rRNA-selective probes have been developed, and most of them encounter the drawbacks of low water solubility, poor nuclear membrane permeability, short emission wavelength, low stability against photobleaching, and high cytotoxicity. These unfavorable properties of rRNA probes limit their potential applications. In the present study, we reported a new rRNA-selective and near-infrared fluorescent turn-on probe, 4MPS-TO, capable of tracking rRNA in live human cancer cells. The real-time monitoring performance in nucleolus morphology and mitochondrial autophagy is demonstrated in HeLa cells. The probe shows great application potential for being used as a rRNA-selective, sensitive, and photostable imaging tool in chemical biology study and drug screening.


Assuntos
Mitofagia , Neoplasias , Humanos , Células HeLa , Corantes Fluorescentes/química , Imagem Óptica/métodos , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...